Pseudomonas aeruginosa là loài vi khuẩn tồn tại phổ biến trong thực phẩm, môi trường sống tự nhiên, như đất và nước. Đáng lo ngại chính là P. aeruginosa có khả năng đề kháng với nhiều loại kháng sinh là mối đe dọa lây truyền các gen đề kháng kháng sinh. Nghiên cứu này cho thấy P. aeruginosa nhiễm trong nhiều nền mẫu thực phẩm tại thành phố Hồ Chí Minh: thịt heo (44,8%; 13/29), thịt bò (38,5%; 10/26), cá (30%; 9/30), thịt gà (25,9%; 7/27), thức uống đường phố (25,9%; 7/27), tôm (17,9%; 5/28), sữa tươi nguyên liệu (10,7%; 3/28). Loại thực phẩm nhiễm P. aeruginosa trung bình cao nhất là thịt bò (≥ 104 CFU /g) và thấp nhất là mẫu tôm (103 CFU/g). 63/94 chủng P. aeruginosa phân lập có kiểu hình nhạy/ trung gian với 10 kháng sinh thử nghiệm và 32/94 chủng có kiểu hình kháng với ít nhất 1 loại kháng sinh. P. aeruginosa có đề kháng cao nhất (29,8%) với aztreonam; tiếp theo là ciprofloxacin (11,7%); gentamicin (2,1%). P. aeruginosa kháng thuốc cao nhất (27,6%) được phân lập từ thịt heo và cá, tôm, thịt gà, thức uống đường phố và thịt bò có tỷ lệ nhiễm P. aeruginosa kháng thuốc lần lượt là 16,7%, 10,7%, 7,4%, 7,4% và 3,9%; không phát hiện P. aeruginosa kháng kháng sinh trong nền mẫu sữa tươi nguyên liệu. Chúng tôi kiến nghị cần có thêm những qui định nhằm kiểm soát sự ô nhiễm của P. aeruginosa trên các nền mẫu thực phẩm khác nhau; đồng thời, cần tiến hành các nghiên cứu sâu hơn về khả năng lây truyền các gen kháng thuốc của vi khuẩn P. aeruginosa nhiễm trong thực phẩm.
Pseudomonas aeruginosa, kháng kháng sinh, thực phẩm, aztreonam
[1]. C. C. António Raposo, Esteban Pérez, Catarina Tinoco de Faria, María Antonia Ferrús, “Food spoilage by Pseudomonas spp.—An overview.,” Foodborne Pathogens and Antibiotic. Resistance, vol. 3, pp. 41–71, 2017, doi: 10.1002/9781119139188.ch3.
[2]. R. Gaynes, J. R. Edwards, N. Infections, and S. System, “Overview of Nosocomial Infections Caused by Gram-Negative Bacilli,” Healthycare Epidemiology, vol. 41, no. 15 September, pp. 848–854, 2005, doi: 10.1086/432803.
[3]. E. B. M. Breidenstein, C. de la Fuente-Núnez, and R. E. W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends in Microbiology, vol. 19, no. 8, pp. 419–426, 2011, doi: 10.1016/j.tim.2011.04.005.
[4]. WHO, “Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics,” pp. 1–7, 2017.
[5]. H. D. Canh, V. L. N. Lan, U. N. Đ. Ninh, L. T. Huu, and C. H. Nghia, “The antibiotic resistance of Pseudomonas aeruginosa isolated from clinical specimens in Pasteur Institute – Ho Chi Minh City,” Ho Chi Minh City University of education journal of science, vol. 61, pp. 156–163, 2014 (in Vietnamese). https://journal.hcmue.edu.vn/index.php/hcmuejos/article/view/2053/2038.
[6]. C. Benie, D. A, N. Guessennd, N. Kouame, B. Yobouet, and A. S, “Prevalence and Diversity of Pseudomonas spp . Isolated from Beef , Fresh and Smoked Fish in Abidjan, Côte d’ Ivoire,” Research & Reviews: Journal of Food and Dairy Technology, vol. 4, no. December, pp. 52–61, 2016.
[7]. Clinical and Laboratory Standard Institute, CLSI M100 - Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed. 2023.
[8]. C. S. Swetha, A. J. Babu, K. V. Rao, S. Bharathy, R. A. Supriya, and T. M. Rao, “A study on the antimicrobial resistant patterns of Pseudomonas aeruginosa isolated from raw milk samples in and around Tirupati , Andhra Pradesh,” Asian Journal of Dairy and Food Research, vol. 36, no. 2, pp. 100–105, 2017, doi: 10.18805/ajdfr.v36i02.7951.
[9]. D. Keskin and S. Ekmekçi, “Investigation of The Incidence of Pseudomonas aeruginosa in Foods and The effect of salt and pH on P. aeruginosa,” Hacettepe Journal of Biology and Chemistry, vol. 36, no. 1, pp. 41–46, 2008.
[10]. A. Chiraporn et al., “Bacterial Contamination in Retail Foods Purchased in Thailand,” Food Science Technology Research, vol. 18, no. 5, pp. 705–712, 2012, doi: 10.3136/fstr.18.705.
[11]. Z. K. Khidhir, B. M. A. Jaff, and H. H. Saleh, “Assessment of the Microbial Quality of Five Types of Iraqi Fresh Fish in Sulaimania markets,” Journal Zankoy Sulaimani, vol. 16, no. October, pp. 251–259, 2014, doi: 10.17656/jzs.10328.
[12]. P. A. Lambert, “Mechanisms of antibiotic resistance in Pseudomonas aeruginosa,” Journal of the Royal Society of Medicine, vol. 95, no. 41. pp. 22–26, 2002.
[13]. Z. C. Zheng Panga, Renee Raudonisb, Bernard R. Glickc, Tong-Jun Lina, b, d, “Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies,” Biotechnology Advances Journal, vol. 37, pp. 177–192, 2019, doi: 10.1016/j.biotechadv.2018.11.013.
[14]. A. R. Sofy, A. E. M. A. Sharaf, A. G. Al Karim, A. A. Hmed, and K. M. Moharam, “Prevalence of the Harmful Gram-Negative Bacteria in Ready-to-Eat Foods in Egypt,” Food and Public Health, vol. 7, no. 3, pp. 59–68, 2017, doi: 10.5923/j.fph.20170703.02.
[15]. F. Bert and L. Nicole, “Antimicrobial Antibiotic resistance patterns in Pseudomonas aeruginosa: an 8-year surveillance study in a French hospital,” International Journal Antimicrobial Agents, vol. 9, no. 1997, pp. 107–112, 1997, doi: 10.1016/S0924-8579(97)00033-2.
[16]. H. Hanberger et al., “Low antibiotic resistance rates in Staphylococcus aureus, Escherichia coli and Klebsiella spp but not in Enterobacter spp and Pseudomonas aeruginosa: a prospective observational study in 14 Swedish ICUs over a 5-year period,” Acta Anaesthesiologica Scandinavica, vol. 51, pp. 937–941, 2007, doi: 10.1111/j.1399-6576.2007.01364.x.
[17]. P. Olga, V. Apostolos, G. Alexis, V. George, and M. Athena, “Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments,” FEMS Microbiology Ecology, vol. 92, no. 5, pp. 1–8, 2016, doi: 10.1093/femsec/fiw042.
[18]. T. Belwal, L. Giri, A. Bahukhandi et al., “Chapter 3.19 - Ginkgo biloba”, Nonvitamin and nonmineral nutritional supplements, pp. 241 – 250, 2019.
[19]. M. A. Walton, C. Villarreal, D. N. Herndon, and J. P. Heggers, “The use of aztreonam as an alternate therapy for multi-resistant Pseudomonas aeruginosa,” Burns, vol. 23, no. 3, pp. 225–227, 1997, doi: 10.1016/s0305-4179(96)00126-x.
[20]. A. H. Uc-Cachón, C. Gracida-Osorno, I. G. Luna-Chi, J. G. Jiménez-Guillermo, and G. M. Molina-Salinas, “High Prevalence of Antimicrobial Resistance Among GramNegative Isolated Bacilli in Intensive Care Units at a Tertiary-Care Hospital in Yucat á n Mexico,”.
[21]. S. Marciniak, E. Zogheib, H. Mammeri, and N. Airapetian, “Use of aztreonam in association with cefepime for the treatment of nosocomial infections due to multidrugresistant strains of Pseudomonas aeruginosa to b -lactams in ICU patients : A pilot study,” Anaesthesia Critical Care & Pain Medicine, vol. 34, pp. 141–144, 2015, doi: 10.1016/j.accpm.2015.02.004.
[22]. T. L. Pitt, M. Sparrow, M. Warner, and M. Stefanidou, “Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents,” Thorax, vol. 58, no. 9, pp. 794–796, 2003, doi: 10.1136/thorax.58.9.794.
[23]. D. Landman et al., “Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY,” Journal of Antimicrobial Chemotherapy, vol. 60, no. May, pp. 78–82, 2007, doi: 10.1093/jac/dkm129.
[24]. WHO, “WHO guidelines on use of medically important antimicrobials in foodproducing animals,” World Health Organization, pp. 13–22, 2017.