The anaerobic, spore-forming, Gram-positive bacterium Clostridium botulinum is responsible for botulism caused by the production of the botulinum neurotoxins (BoNTs), of which four serotypes A, B, E, and F, are known to be lethal to humans. In 2020, nearly a hundred cases of botulinum poisoning were reported in Vietnam for the first time. Culture-based methods, including mouse bioassay routinely used for botulism diagnosis, may take weeks, resulting in the patients not receiving timely treatment. Thus, nucleic acid amplification tests (NAATs) using specific primers have become a promising alternative. In this study, we selected four primer pairs that would produce four distinct fragments of 240 bp, 205 bp, 140 bp, and 415 bp corresponding to 4 target genes that encode BoNT/A, /B, /E, and /F for convenient separation using regular agarose electrophoresis. The modified thermal cycle that combined annealing and extension steps allowed completion of the multiplex PCR reaction in one hour. The analytical specificity of the method was also evaluated based on two strains of the same genus Clostridium and six strains of different genus Clostridium. The detection limits of the method were determined to be 103 copies/μL for serotypes A, B and E with both pure plasmids and DNA extracted from spiked samples. The total time of the established procedure was 1.5 hours, including electrophoresis.
Multiplex PCR, Clostridium botulinum, serotype A, B, E, F, BoNT, agarose electrophoresis
[1]. M. Lindström, R. Keto, A. Markkula, M. Nevas, S. Hielm, H. Korkeala , “Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material,” Applied and environmental microbiology, vol. 67, no. 12, pp. 5694–5699, 2001, doi: 10.1128/AEM.67.12.5694-5699.2001.
[2]. D. De Medici, F.Anniballi, G. M. Wyatt, M. Lindström, U. Messelhäusser, C. F. Aldus, E. Delibato, H. Korkeala, M. W. Peck, L. Fenicia, “Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples,” Applied and environmental microbiology, vol. 75, no. 20, pp. 6457–6461, 2009, doi: 10.1128/AEM.00805-09.
[3]. D. A. Centurioni, C. T. Egan, M. J. Perry, “Current Developments in Diagnostic Assays for Laboratory Confirmation and Investigation of Botulism,” Journal of clinical microbiology, vol. 60, no. 4, pp. e0013920, 2022, doi: 10.1128/JCM.00139-20.
[4]. E. M. Elnifro, A. M. Ashshi, R. J. Cooper, P. E. Klapper, “Multiplex PCR: optimization and application in diagnostic virology,” Clinical microbiology reviews, vol. 13, no. 4, pp. 559–570, 2002, doi: 10.1128/CMR.13.4.559.
[5]. T. J. Smith, K. M. Schill, C. H. D. Williamson, “Navigating the Complexities Involving the Identification of Botulinum Neurotoxins (BoNTs) and the Taxonomy of BoNT-Producing Clostridia,” Toxins, vol. 15, no. 9, pp. 545, 2023, doi: 10.3390/toxins15090545.
[6]. M. Lindström, H. Korkeala, “Laboratory diagnostics of botulism,” Clinical microbiology reviews, vol. 19, no. 2, pp. 298–314, 2006, doi: 10.1128/CMR.19.2.298-314.2006.
[7]. C. L. Hatheway, “Clostridium botulinum and other clostridia that produce botulinum neurotoxins,” Clostridium botulinum: Ecology and Control in Food, pp. 3-20, 1992, doi: 10.1201/9781315139623-1.
[8]. MW. Peck, “Biology and genetic analysis of Clostridium botulinum,” Advances in Microbial Physiology, vol. 75, no. 320, pp. 183–265, 2009, doi: 10.1016/S0065-2911(09)05503-9.
[9]. F. Anniballi, B. Auricchio, C. Woudstra, P. Fach, A. Fiore, H. Skarin, L. Bano, B. Segerman, R. Knutsson, D. De Medici, “Multiplex real-time PCR for detecting and typing Clostridium botulinum group III organisms and their mosaic variants,” Biosecurity and bioterrorism: biodefense strategy, practice, and science, vol. 11, pp. s207–s214, 2013, doi: 10.1089/bsp.2012.0084.
[10]. S. P. Pillai, K. K. Hill, J. Gans, T. J. Smith, “Real-time PCR assays that detect genes for botulinum neurotoxin A-G subtypes,” Frontiers in microbiology, vol. 15, 2024, doi: 10.3389/fmicb.2024.1382056.
[11]. R. A. Hutson, Y. Zhou, M. D. Collins, E. A. Johnson, C. L. Hatheway, H. Sugiyama, “Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences,” The Journal of biological chemistry, vol. 271, no. 18, pp. 10786–10792, 1996, doi: 10.1074/jbc.271.18.10786.
[12]. J. J. Cordoba, M. D. Collins, A. K. East, “Studies on the genes encoding botulinum neurotoxin type A of Clostridium botulinum from a variety of sources,” Systematic and Applied Microbiology, vol. 18, pp. 13-22, 1995, doi: 10.1016/S0723-2020(11)80443-1.
[13]. Matt Lewis, “Agarose gel electrophoresis (basic method),” 2011. [Online]. Available: http://www.methodbook.net/dna/agarogel.html.
[14]. Lawyer, F. C., Stoffel, S., Saiki, R. K., Chang, S. Y., Landre, P. A., Abramson, R. D., & Gelfand, D. H., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR methods and applications, Vol. 2, no. 4, pp. 275–287, 1993. https://doi.org/10.1101/gr.2.4.275.
[15]. https://assets.thermofisher.com/TFS-Assets/BID/Application-Notes/at-rich-pcr-phusion-plus-app-note.pdf
[16]. Chen Y, Korkeala H, Aarnikunnas J, Lindstrom M., “Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype”, Journal of Bacteriol, 189, pp. 8643–8650, 2007. doi:10.1128/JB.00784-07.
[17]. Lee W, Riemann HJM. The genetic relatedness of proteolytic Clostridium botulinum strains. 64, 85–90, 1970.
[18]. Bohlin J, Eldholm V, Pettersson JH, Brynildsrud O, Snipen L. “The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes,” BMC Genomics, vol. 18, no. 151, 2017 doi:10.1186/s12864-017-3543-7.
[19]. Garafutdinov, R. R., Galimova, A. A., & Sakhabutdinova, A. R., “The influence of quality of primers on the formation of primer dimers in PCR,” Nucleosides, nucleotides & nucleic acids, vol. 39, no.9, pp. 1251–1269, 2020, doi: 10.1080/15257770.2020.180335.
[20]. Haim M. Solomon and Timothy Lilly, Jr., "BAM Chapter 17: Clostridium botulinum," Bacteriological Analytical Manual, January 2001 Edition, U.S. Food and drug Adminitration. Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-17-clostridium-botulinum
[21]. Chu Hai Anh., Vu Minh, Tang Nga, Nguyen Thuy Tram, Le Huy Hoang, & Pham, Yen, “Development of a loop-mediated isothermal amplification method for the rapid detection of Clostridium botulinum serotypes E and F”, Molecular biology reports, Vol. 52, no.1, pp.29, 2024. https://doi.org/10.1007/s11033-024-10122-6.