In this study, we developed a non-enzymatic electrochemical sensor using a porous graphene electrode modified with ZnO nanoparticles (ZnO/fPGE sensor) to determine xanthine (XA) content. The ZnO/fPGE sensor is fabricated using a hydrothermal method and CO2 infrared laser writing technique on a polyimide film. The morphology, structure, and properties of the ZnO/fPGE were meticulously characterized using Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and Von-Ampe spectroscopy methods. The ZnO/fPGE sensor exhibited a broad linear response range from 1 µM to 100 µM, a low limit of detection (LOD) of 0.29 µM, high sensitivity at 7.05 µA.µM⁻¹.cm⁻², and demonstrated effective resistance to common interferences such as uric acid, ascorbic acid, dopamine, glucose, and xanthine. Notably, the ZnO/fPGE sensor has created a conducive electrical environment for the advancement of high-performance electrochemical biosensors, specifically for the precise determination of xanthine levels in meat and fish products.
electrochemical sensors, xanthine, porous graphene, ZnO nanoparticles, food safety.
[1]. W.X.L. Felicia, K. Rovina, N.Md N. Aqilah, J.M. Vonnie, K.W. Yin, and N. Huda, “Assessing meat freshness via nanotechnology biosensors: Is the world prepared for lightning-fast pace methods?,” Biosensors, vol. 13, no. 2, pp. 217, 2023.
[2]. J.H. Hwang, Y. Kim, H. Choi, and K.G. Lee, “ATP degradation products as freshness indicator of flatfish during storage,” Food Science and Biotechnology, vol. 28, no. 6, pp. 1891–1897, 2019.
[3]. K.H. Erna, K. Rovina, and S. Mantihal, “Current detection techniques for monitoring the freshness of meat-based products: A review,” Journal of Packaging Technology and Research, vol. 5, no. 1, pp. 127 - 141, 2021.
[4]. N. Cooper, R. Khosravan, C. Erdmann, J. Fiene, and J.W. Lee, “Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies,” Journal of Chromatography B, vol. 837, no. 1-2, pp. 1-10, 2006.
[5]. R. Parker, W. Snedden, and R.W.E. Watts, “Mass-spectrometric identification of hypoxanthine and xanthine (“oxypurines”) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria),” Biochemical Journal, vol. 115, no. 1, pp. 103-108, 1969.
[6]. Z.K. Shihabi, M.E. Hinsdale, and A.J. Bleyer, “Xanthine analysis in biological fluids by capillary electrophoresis,” Journal of Chromatography B, vol. 669, no. 1, pp. 163-169, 1995.
[7]. X. Zhang, J. Dong, X. Qian, and Ch Zhao, “One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine,” Sensors Actuators B, vol. 221, pp. 528–536, 2015.
[8]. M.Z.H. Khan, M.S. Ahommed, and M. Daizy, “Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT: PSS and functionalized gold nanoparticles,” RSC Advances, vol. 10, no. 59, pp. 36147–36154, 2010.
[9]. S. Yazdanparast, A. Benvidi, S. Abbasi, and M. Rezaeinasab, “Enzyme-based ultrasensitive electrochemical biosensor using poly (l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker,” Microchemical Journal, vol. 149, pp. 104000, 2019.
[10]. M. Pumera, “Graphene in biosensing,” Materials Today, vol. 14, no. 7-8, pp. 308-315, 2011.
[11]. K. ghanbari and F. Nejabati, “Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection,” Journal of Food Measurement and Characterization, vol. 13, no.2, pp. 1411-1422, 2019.
[12]. K. Ghanbari and F. Nejabati, “Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat,” Analytical Methods, vol. 12, pp. 1650–1661, 2020.
[13]. Z. F. Wan, S. J. Wang, B. Haylock, J. Kaur, P. Tanner, D. Thiel, R. Sang, I. S. Cole, X. P. Li, M. Lobino, and Q. Li, “Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser,” Carbon, vol. 141, pp. 83 –91, 2019.
[14]. Z. Wan, N.-T. Nguyen, Y. Gao, and Q. Li, “Laser induced graphene for biosensors,” Sustainable Materials and Technologies, vol. 25, pp. e00205, 2020.
[15]. R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Applied Materials & Interfaces, vol. 7, no. 8, pp. 4463 –4470, 2015.
[16]. V. P. Wanjari, A. S. Reddy, S. P. Duttagupta, and S. P. Singh, “Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective,” Environmental Science and Pollution Research, vol. 30, pp. 42643–42657, 2023.
[17]. G. Xue, W. Yu. L. Yutong, Z. Qiang, L. Xiuying, T. Yiwei, and L. Jianrong, “Construction of a novel xanthine biosensor using zinc oxide (ZnO) and the biotemplate method for detection of fish freshness,” Analytical Methods, vol. 11, pp. 1021, 2019.
[18]. H. Jeong, J. Yoo, S. Park, J. Lu, S. Park, and J. Lee, “Non-enzymatic glucose biosensor based on highly pure TiO2 nanoparticles,” Biosensors, vol. 11, no. 5, pp. 149, 2021.
[19]. M. L. M. Napi, S. M. Sultan, R. Ismail, K. W. How, and M. K. Ahmad, “Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review,” Materials, vol. 12, no. 18, pp. 2985, 2019.
[20]. V. P. Wanjari, A. S. Reddy, S. P. Duttagupta, and S. P. Singh, “Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective,” Environmental Science and Pollution Research, vol. 30, pp. 42643–42657, 2023.
[21]. N. F. Santos, J. Rodrigues, S. O. Pereira, A. J. S. Fernandes, T. Monteiro, and F. M. Costa, “Electrochemical and photoluminescence response of laser‑induced graphene electrodeposited ZnO composites,” Scientific Reports, vol. 11, no. 01, pp. 17154, 2021.
[22]. S. Park, S. An, H. Ko, C. Jin, C. Lee. “Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties,” ACS Applied Materials & Interfaces, vol. 4, no. 7, pp. 3650–3656, 2012.
[23]. J, Ali, R. Irshad, B. Li, K. Tahir, A. Ahmad, M. Shakeel, Z.U.H. Khan, “Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications,” Journal of Photochemistry and Photobiology B: Biology, vol. 183, pp. 349–356, 2018.
[24]. L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5-6, pp. 51-87, 2009.
[25]. J. Wu, M. Lin, X. Cong, H. Liu a and P. Tan, “Raman spectroscopy of graphene-based materials and its applications in related devices,” Chem. Soc. Rev., vol. 47, no. 5, pp. 1822, 2018.
[26]. Y. Bleu, F. Bourquard, A.-S. Loir, V. Barnier, F. Garrelie and C. Donnet, “Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing,” J. Raman Spectrosc., vol. 50, no.11, pp.1630-1641, 2019.
[27]. A. Marzouki, C. Sartel, N. Haneche, G. Patriarche, A. Lusson, V. Sallet and M. Oueslati, “Fabrication and characterization of ZnO:Sb/n‑ZnO homojunctions,” Appl. Phys. A, vol. 127, no. 6, pp. 471, 2021.
[28]. A. J. Bard and L. R. Faulkner, “Electrochemical methods fundamentals and applications,” John Wiley & Sons, Inc. Second Edition, 2001.
[29]. R. S. Nicholson, “Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics,” Anal. Chem., vol. 37, no. 11,pp. 1351–1355, 1965.
[30]. A. Marzouki, C. Sartel, N. Haneche, G. Patriarche, A. Lusson, V. Sallet and M. Oueslati “Fabrication and characterization of ZnO:Sb/n‑ZnO homojunctions,” Appl. Phys. A, vol. 127, no. 6, pp. 471, 2021.
[31]. V. J. Sinanoglou, P. Zoumpoulakis, C. Fotakis, N. Kalogeropoulos, A. Sakellari, S. Karavoltsos and I. F. Strati, “On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars,” Antioxidants, vol. 7, no. 10, pp. 139, 2018.
[32]. R. S. Nicholson and I. Shain, “Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems,” Anal. Chem., vol, 36, no. 4, pp. 706–723, 1964.
[33]. L. Zhang, S. Li, J. Xin, H. Ma, H. Pang, L. Tan and X. Wang, “A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine,” Microchimica. Acta., vol. 186, no.573, pp. 9, 2019.
[34]. N. T. V. Hoan, N. N. Minh, N. T. H. Trang, L. T. T. Thuy, C. V. Hoang, T. X. Mau, H. X. A. Vu, P. T. K. Thu, N. H. Phong and D. Q. Khieu, “Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode,” Hindawi Journal of Nanomaterials, Article ID 9797509 1-15, 2020.
[35]. N. T. H. Le, N. X. Viet, N. V. Anh, T. N. Bach, P. T. Thu, N. T. Ngoc, D. H. Manh, V. H. Ky, V. D. Lam, V. Kodelov, S. Von Gratowski, N. H. Binh and T. X. Anh, “Non-Enzymatic Electrochemical Sensor based on ZnO Nanoparticles/Porous Graphene for the Detection of Hypoxanthine in Pork Meat,” AIP Advanced, 14, 2024.
[36]. N. Vishnu, M. Gandhi, D. Rajagopal and A. S. Kumar, “Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples,” Anal. Methods, vol. 9, pp. 2265-2274, 2017.
[37]. R. Goyal, A. Mittal, and S. Sharma, “Simultaneous voltammetric determination of hypoxanthine, xanthine, and uric acid,” Electroanalysis, vol. 6, pp. 609–611, 1994.
[38]. A. S. Kumar and P. Swetha, “Ru(DMSO)4¬Cl2 nano-aggregated Nafion membrane modified electrode for simulateneous electrochemical detection of hypoxanthine, xanthine and uric acid,” Journal of Electroanalytical Chemistry, vol. 642, pp. 135-142, 2010.