Bìa tạp chí

 

009bet

Research and development of non-enzymatic electrochemical sensors utilizing porous ZnO/graphene electrodes to determine xanthine

Ta Ngoc Bach Nguyen Xuan Viet Nguyen Van Anh Pham Quang Trung Nguyen Thi Minh Thu Phung Thi Thu Vu Hong Ky Do Hung Manh Vu Dinh Lam Nguyen Huy Dan Trinh Xuan Anh Ngo Thi Hong Le
Published 02/02/2024

Article Details

How to Cite
Ta Ngoc Bach, Nguyen Xuan Viet, Nguyen Van Anh, Pham Quang Trung, Nguyen Thi Minh Thu, Phung Thi Thu, Vu Hong Ky, Do Hung Manh, Vu Dinh Lam, Nguyen Huy Dan, Trinh Xuan Anh, Ngo Thi Hong Le. "Research and development of non-enzymatic electrochemical sensors utilizing porous ZnO/graphene electrodes to determine xanthine". Vietnam Journal of Food Control. vol. 7, no. 1, pp. 12-23, 2024
PP
12-23
Counter
56

Main Article Content

Abstract

In this study, we developed a non-enzymatic electrochemical sensor using a porous graphene electrode modified with ZnO nanoparticles (ZnO/fPGE sensor) to determine xanthine (XA) content. The ZnO/fPGE sensor is fabricated using a hydrothermal method and CO2 infrared laser writing technique on a polyimide film. The morphology, structure, and properties of the ZnO/fPGE were meticulously characterized using Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and Von-Ampe spectroscopy methods. The ZnO/fPGE sensor exhibited a broad linear response range from 1 µM to 100 µM, a low limit of detection (LOD) of 0.29 µM, high sensitivity at 7.05 µA.µM⁻¹.cm⁻², and demonstrated effective resistance to common interferences such as uric acid, ascorbic acid, dopamine, glucose, and xanthine. Notably, the ZnO/fPGE sensor has created a conducive electrical environment for the advancement of high-performance electrochemical biosensors, specifically for the precise determination of xanthine levels in meat and fish products.

Keywords:

electrochemical sensors, xanthine, porous graphene, ZnO nanoparticles, food safety.

References

[1]. W.X.L. Felicia, K. Rovina, N.Md N. Aqilah, J.M. Vonnie, K.W. Yin, and N. Huda, “Assessing meat freshness via nanotechnology biosensors: Is the world prepared for lightning-fast pace methods?,” Biosensors, vol. 13, no. 2, pp. 217, 2023.
[2]. J.H. Hwang, Y. Kim, H. Choi, and K.G. Lee, “ATP degradation products as freshness indicator of flatfish during storage,” Food Science and Biotechnology, vol. 28, no. 6, pp. 1891–1897, 2019.
[3]. K.H. Erna, K. Rovina, and S. Mantihal, “Current detection techniques for monitoring the freshness of meat-based products: A review,” Journal of Packaging Technology and Research, vol. 5, no. 1, pp. 127 - 141, 2021.
[4]. N. Cooper, R. Khosravan, C. Erdmann, J. Fiene, and J.W. Lee, “Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies,” Journal of Chromatography B, vol. 837, no. 1-2, pp. 1-10, 2006.
[5]. R. Parker, W. Snedden, and R.W.E. Watts, “Mass-spectrometric identification of hypoxanthine and xanthine (“oxypurines”) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria),” Biochemical Journal, vol. 115, no. 1, pp. 103-108, 1969.
[6]. Z.K. Shihabi, M.E. Hinsdale, and A.J. Bleyer, “Xanthine analysis in biological fluids by capillary electrophoresis,” Journal of Chromatography B, vol. 669, no. 1, pp. 163-169, 1995.
[7]. X. Zhang, J. Dong, X. Qian, and Ch Zhao, “One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine,” Sensors Actuators B, vol. 221, pp. 528–536, 2015.
[8]. M.Z.H. Khan, M.S. Ahommed, and M. Daizy, “Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT: PSS and functionalized gold nanoparticles,” RSC Advances, vol. 10, no. 59, pp. 36147–36154, 2010.
[9]. S. Yazdanparast, A. Benvidi, S. Abbasi, and M. Rezaeinasab, “Enzyme-based ultrasensitive electrochemical biosensor using poly (l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker,” Microchemical Journal, vol. 149, pp. 104000, 2019.
[10]. M. Pumera, “Graphene in biosensing,” Materials Today, vol. 14, no. 7-8, pp. 308-315, 2011.
[11]. K. ghanbari and F. Nejabati, “Construction of novel nonenzymatic Xanthine biosensor based on reduced graphene oxide/polypyrrole/CdO nanocomposite for fish meat freshness detection,” Journal of Food Measurement and Characterization, vol. 13, no.2, pp. 1411-1422, 2019.
[12]. K. Ghanbari and F. Nejabati, “Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat,” Analytical Methods, vol. 12, pp. 1650–1661, 2020.
[13]. Z. F. Wan, S. J. Wang, B. Haylock, J. Kaur, P. Tanner, D. Thiel, R. Sang, I. S. Cole, X. P. Li, M. Lobino, and Q. Li, “Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser,” Carbon, vol. 141, pp. 83 –91, 2019.
[14]. Z. Wan, N.-T. Nguyen, Y. Gao, and Q. Li, “Laser induced graphene for biosensors,” Sustainable Materials and Technologies, vol. 25, pp. e00205, 2020.
[15]. R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Applied Materials & Interfaces, vol. 7, no. 8, pp. 4463 –4470, 2015.
[16]. V. P. Wanjari, A. S. Reddy, S. P. Duttagupta, and S. P. Singh, “Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective,” Environmental Science and Pollution Research, vol. 30, pp. 42643–42657, 2023.
[17]. G. Xue, W. Yu. L. Yutong, Z. Qiang, L. Xiuying, T. Yiwei, and L. Jianrong, “Construction of a novel xanthine biosensor using zinc oxide (ZnO) and the biotemplate method for detection of fish freshness,” Analytical Methods, vol. 11, pp. 1021, 2019.
[18]. H. Jeong, J. Yoo, S. Park, J. Lu, S. Park, and J. Lee, “Non-enzymatic glucose biosensor based on highly pure TiO2 nanoparticles,” Biosensors, vol. 11, no. 5, pp. 149, 2021.
[19]. M. L. M. Napi, S. M. Sultan, R. Ismail, K. W. How, and M. K. Ahmad, “Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review,” Materials, vol. 12, no. 18, pp. 2985, 2019.
[20]. V. P. Wanjari, A. S. Reddy, S. P. Duttagupta, and S. P. Singh, “Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective,” Environmental Science and Pollution Research, vol. 30, pp. 42643–42657, 2023.
[21]. N. F. Santos, J. Rodrigues, S. O. Pereira, A. J. S. Fernandes, T. Monteiro, and F. M. Costa, “Electrochemical and photoluminescence response of laser‑induced graphene electrodeposited ZnO composites,” Scientific Reports, vol. 11, no. 01, pp. 17154, 2021.
[22]. S. Park, S. An, H. Ko, C. Jin, C. Lee. “Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties,” ACS Applied Materials & Interfaces, vol. 4, no. 7, pp. 3650–3656, 2012.
[23]. J, Ali, R. Irshad, B. Li, K. Tahir, A. Ahmad, M. Shakeel, Z.U.H. Khan, “Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications,” Journal of Photochemistry and Photobiology B: Biology, vol. 183, pp. 349–356, 2018.
[24]. L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5-6, pp. 51-87, 2009.
[25]. J. Wu, M. Lin, X. Cong, H. Liu a and P. Tan, “Raman spectroscopy of graphene-based materials and its applications in related devices,” Chem. Soc. Rev., vol. 47, no. 5, pp. 1822, 2018.
[26]. Y. Bleu, F. Bourquard, A.-S. Loir, V. Barnier, F. Garrelie and C. Donnet, “Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing,” J. Raman Spectrosc., vol. 50, no.11, pp.1630-1641, 2019.
[27]. A. Marzouki, C. Sartel, N. Haneche, G. Patriarche, A. Lusson, V. Sallet and M. Oueslati, “Fabrication and characterization of ZnO:Sb/n‑ZnO homojunctions,” Appl. Phys. A, vol. 127, no. 6, pp. 471, 2021.
[28]. A. J. Bard and L. R. Faulkner, “Electrochemical methods fundamentals and applications,” John Wiley & Sons, Inc. Second Edition, 2001.
[29]. R. S. Nicholson, “Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics,” Anal. Chem., vol. 37, no. 11,pp. 1351–1355, 1965.
[30]. A. Marzouki, C. Sartel, N. Haneche, G. Patriarche, A. Lusson, V. Sallet and M. Oueslati “Fabrication and characterization of ZnO:Sb/n‑ZnO homojunctions,” Appl. Phys. A, vol. 127, no. 6, pp. 471, 2021.
[31]. V. J. Sinanoglou, P. Zoumpoulakis, C. Fotakis, N. Kalogeropoulos, A. Sakellari, S. Karavoltsos and I. F. Strati, “On the Characterization and Correlation of Compositional, Antioxidant and Colour Profile of Common and Balsamic Vinegars,” Antioxidants, vol. 7, no. 10, pp. 139, 2018.
[32]. R. S. Nicholson and I. Shain, “Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems,” Anal. Chem., vol, 36, no. 4, pp. 706–723, 1964.
[33]. L. Zhang, S. Li, J. Xin, H. Ma, H. Pang, L. Tan and X. Wang, “A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine,” Microchimica. Acta., vol. 186, no.573, pp. 9, 2019.
[34]. N. T. V. Hoan, N. N. Minh, N. T. H. Trang, L. T. T. Thuy, C. V. Hoang, T. X. Mau, H. X. A. Vu, P. T. K. Thu, N. H. Phong and D. Q. Khieu, “Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode,” Hindawi Journal of Nanomaterials, Article ID 9797509 1-15, 2020.
[35]. N. T. H. Le, N. X. Viet, N. V. Anh, T. N. Bach, P. T. Thu, N. T. Ngoc, D. H. Manh, V. H. Ky, V. D. Lam, V. Kodelov, S. Von Gratowski, N. H. Binh and T. X. Anh, “Non-Enzymatic Electrochemical Sensor based on ZnO Nanoparticles/Porous Graphene for the Detection of Hypoxanthine in Pork Meat,” AIP Advanced, 14, 2024.
[36]. N. Vishnu, M. Gandhi, D. Rajagopal and A. S. Kumar, “Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples,” Anal. Methods, vol. 9, pp. 2265-2274, 2017.
[37]. R. Goyal, A. Mittal, and S. Sharma, “Simultaneous voltammetric determination of hypoxanthine, xanthine, and uric acid,” Electroanalysis, vol. 6, pp. 609–611, 1994.
[38]. A. S. Kumar and P. Swetha, “Ru(DMSO)4¬Cl2 nano-aggregated Nafion membrane modified electrode for simulateneous electrochemical detection of hypoxanthine, xanthine and uric acid,” Journal of Electroanalytical Chemistry, vol. 642, pp. 135-142, 2010.

 Submit