A simple and cost-effective method for simultaneous determination of methanol, ethanol, and isopropanol in human blood and white spirit samples using headspace gas chromatography coupled with flame ionization detection (HS-GC-FID) was developed and validated for clinical and toxicological purposes. In this study, the headspace sampling procedure was investigated, indicating optimized temperature of 70 °C in 20 min. Concentrations of target compounds were determined by internal standard (IS) method with acetonitrile as IS compound. A good resolution of chromatographic peaks was achieved. The linear ranges for all the compounds were from 1 to 500 mg/dL. Our method was validated with adequate accuracy (recovery > 98%) and precision (RSD < 0.1%) in whole human blood and white spirit samples. The limits of detection were below 0.5 mg/L for the three compounds. This method is easy to perform, making it suitable for routine analysis in clinical biochemistry and forensic laboratories.
Methanol, ethanol, isopropanol, blood, white spirit, GC-FID
[1]. L. O. Péres, R. W. C. Li, E. Y. Yamauchi, R. Lippi, J. Gruber, "Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit", Food Chemistry, 130, 1105 – 1107, 2012.
[2]. AOAC, White spirit s. In Official methods of analysis of AOAC international, 15th Edition, pp. 739–750, 1990.
[3]. C.C. Kuo, Y.H. Wen, C.M. Huang, H.L. Wu, S.S. Wu, “A removable derivatization HPLC for analysis of methanol in Chinese liquor medicine”, Journal of Food and Drug Analysis, 10, 101–106, 2002.
[4]. K. Lynam, Screen Beer by GC/MS Static Headspace with the Agilent J&W DB-624 Ultra Inert Capillary Column, Agilent Technologies.
[5]. P. F. Pereira, R.M.F. Sousa, R.A.A. Munoz, E.M. Richter, "Simultaneous determination of ethanol and methanol in fuel ethanol using cyclic voltammetry", Fuel, 103, 725 – 729, 2013.
[6]. A. Shishov, A. Penkova, A. Zabrodin, K. Nikolaev, M. Dmitrenko, S. Ermakov, A. Bulatov, "Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection", Talanta, 148 (Supplement C), 666-672, 2016.
[7]. B.J. Savary, A. Nuñez, "Gas chromatography–mass spectrometry method for determining the methanol and acetic acid contents of pectin using headspace solid-phase microextraction and stable isotope dilution", Journal of Chromatography A, 1017, 151 – 159, 2003.
[8]. G. C. Zhuang, Y. S. Lin, M. Elvert, V. B. Heuer, K. U. Hinrichs,"Gas chromatographic analysis of methanol and ethanol in marine sediment pore waters: Validation and implementation of three pretreatment techniques", Marine Chemistry, 160, 82 -90, 2014.
[9]. M. L. Wang, J. T. Wang, Y. M. Choong, "A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography", Journal of Food Composition and Analysis, 17, 187 – 196, 2004.
[10]. S. Kage, K. Kudo, H. Ikeda, N. Ikeda, "Simultaneous determination of formate and acetate in whole blood and urine from humans using gas chromatography–mass spectrometry", Journal of Chromatography B, 805, 113 – 11, 2004.
[11]. M. Bursova, T. Hlozek and R. Cabala, “Simultaneous Determination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID”, Journal of Analytical Toxicology, 39, 741 –745, 2015.